
INSTABILITY OF A LIQUID SURFACE WITH LASER HEATING 

V. N. Alekseev, K. A. Naugol'nykh, and S. A. Rybak UDC 530.182 

We consider two mechanisms for occurrence of surface instability for a liquid with 
heating by means of laser radiation. Nonuniform heating along the liquid surface leads 
to thermocapillary instability. In contrast to other works a nonstationary heating regime 
is studied for the substance and estimates are provided for the minimum threshold for occur- 
rence of instability of thistype. With evaporation of the substance nonuniform heating of 
the liquid through the depth leads to occurrence of instability of another type. In this 
case estimates are obtained for the maximum increment in increasing surface disturbances 
with the minimum of assumptions. 

1. Surface waves are excited with the action of powerful laser radiation on the free 
surface of a liquid. Excitation of capillary waves by a pressure output pulse is considered 
in [i], stimulated by laser radiation under conditions when the duration of the effect is 
small compared with the period of the capillary wave. A reverse situation is also possible 
when excitation of surface waves occurs as a result of development of instability during 
interaction of laser radiation with a substance. Here a build-up of surface disturbances 
may markedly change conditions for the absorption and scattering of light and affect devel- 
opment of the process of light interaction with a liquid [2]. One of the possible mecha- 
nisms for instability is connected with nonuniform heating of the surface layer. With non- 
uniform temperature distribution along the surface a thermocapillary force arises [3] pro- 
portional to the gradient of surface tension ~. This tangential force operates in the sur- 
face layer of a substance and causing movement of it leads to formation of craters, i.e., 
deflection of the liquid surface in an area of increased temperature [4]. 

As is shown in [5], with nonuniform heating of a liquid at its surface two types of 
waves may be activated: gravitational-capillary and thermocapillary waves. Occurrence of 
instability of the first type is connected with distortion of the shape of the interface of 
two media z = ~(x, t), and below the main attention will be devoted to self-activation of 
gravitational-capillary waves. 

It is well known [6] that a change in mechanical vibration energy of an arbitrary type 
is described by the equation 

den S dt  = - -  T 9 s  d r  + <v/>, (1.1) 

where E m = <[Pv2dr> is vibration energy (in the case surface waves) averaged for vibration 
period 2~/m. ~ The energy is worked out most simply in an approximation of a low-viscosity 
liquid when movement of the substance may be considered almost potential. In this case liq- 
uid movement velocity v is determined exclusively by the scalar potential and the energy of 
surface vibrations arriving in a unit area equal to pm2J~0J2/2k [p is liquid density, k is 
wave number of a propagating surface wave ~(x, t) = ~0 exp(ikx - i~t)]. 

If an increase in entropy of the substance s depends mainly on viscous losses, then 

the first term to the right in equality (i.i) is transformed to the expression(i/2)~yo~hdr~ 

and with a plane monochromatic surface wave it equals 2qkm2J~0J 2 [3] (Oik is viscous stress 
tensor, q = up is dynamic viscosity). However, a change in vibration energy E m in the gen- 
eral case may occur both as a result of an increase in entropy of the substance, and also 
as a result of completing additional work <vf>. The same as in stationary flow, a build-up 
of vibrations is possible due to the energy of external flow reciprocation [6], and as in 
the case of a thermal source there is possible self-activation of surface waves due to the 
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work of thermocapillary force proportional to aa/ax (x is coordinate along the liquid sur- 
face). Assuming that the surface tension coefficient is a well-defined function of temper- 
ature and with an increase in it a(T) falls, we find that the power of this force referred 

to a unit of surface S is <vJ>IS~-Idal~ (07 ~,oI"~ \ -~ v~ ~-z q-gXTz)z ,/. Here by substituting Vx(Z = ~) = 

-me and amplitude values of temperature we find that in a quadratic approximation with re- 
spect to r the power sought is 

~kS I d~ . ~.* (1.2) 

(T l is amplitude of liquid temperature oscillation linear with respect to ~). 

In the case of a stationary flow of heat, zero with respect to ~, the right-hand part 
of Eq. (i.i) may be reduced to the expression ~Em, where the value of ~ which is constant 
with respect to time has the physical meaning of a decrement (or increment with ~ > 0) of 
vibrations. By equating u to zero it is possible to find the threshold for occurrence of 
instability [5, 7]. However, the calculation scheme provided relates to the case of sta- 
tionary distribution of temperature in the liquid surface layer. In contrast to this we 
consider the question of self-activation of surface disturbances under conditions when the 
distribution of temperature is found from solving the problem of heating the surface layer 
of a liquid by laser radiation, and as we shall see it appears to be exclusively nonstation- 
ary. 

2. Let at the surface of a liquid from direction z < 0 radiation fall with intensity 
I(t) and it be absorbed in a thin layer of substance with thickness ~I/D. For simplicity 
we shall assume that the reflection coefficient for radiation equals zero, and the diameter 
of the laser spot d is large compared with thickness I/D. The temperature distribution in 
the liquid is described by the normal thermal conductivity equation 

) 9cp -~F + vVT = •  + ~ f  (t) exp { - -  ~ [z - -  ~ (x, t)]}, z ~ O ,  ( 2 . 1 )  

where Cp is liquid specific heat capacity; K = XpCp is its thermal conductivity coefficient~ 

The condition d >> I/D makes it possible in an approximation of a plane phase interface r = 
0 to consider the "zero" problem to be unidimensional and in particular to substitute the 
Laplace ~ in (2.1) by 82/az 2. With a moderate intensity of electromagnetic radiation when 
heating of the substance is not accompanied by evaporation of it, Eq. (2.1) is supplemented 
by a boundary condition 

(nvT)z=~(~,0 = 0 ( 2 . 2 )  

[ n i s  t h e  n o r m a l  t o  s u r f a c e  z = r  t ) ] .  We n o t e  t h a t  c o n d i t i o n  ( 2 . 2 )  i s  a c c u r a t e  f o r  a 
l i q u i d  b o u n d e d  b y  a v a c u u m ,  a n d  i t  i s  a p p r o x i m a t e  f o r  a l i q u i d  b o u n d e d  by  a r e a l  g a s .  S i n c e  
gas thermal conductivity ~' is normally small, then heat flow from the direction of a gas 
K'(VT')z= ~ in the right-hand part of (2.2) may be ignored. 

By placing in Eq. (2.1) a disturbance ~ equal to zero, and also v = 0, and substituting 
A by 82/8z 2 we find the zero solution of thermal conductivity equation (2.1). Here boundary 
condition (2.2) is simply reduced to equality to zero of derivative 8T0/az at surface z = 0. 
In this case the solution of the problem may be written in quadratures: 

t oo 

T O (z, t) = Too -}- ~ d t ' I ( t ' )  exp ~ (t-  ,)/q ~ exp 4q q " (2.3) 

Here T~ is initial liquid temperature; t I = I/X~ 2 is time (in which the thermal wave reaches 

the "end" of the absorption zone) determined from the equality Xr = i/~. Analysis of ex- 
pression (2.3) shows that the stationary regime in the unidimensional case and with absence 
of liquid evaporation is almost never accomplished. In fact, from solution (2.3) obtained 
it follows that at first (with t << tl) the temperature at each point of space increases in 
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proportion to the amount of heat released and it is approximately equal to 

t 

T O (z, t) = T~  + (~t/,OCp) exp (-- pz).f d t ' I  (t'). 
0 

With constant radiation intenSity this means that temperature To increases linearly with 
time. With t ~ tl thermal conductivity has a marked role. Heat starts to flow from the 
liquid surface in porportion to ~ and the increase in T O with time slows down somewhat. 
In the limiting case t >> tl and with the condition that the laser pulse was deexcited, the 
temperature To at each point of space by reaching a maximum falls to the initial value T~. 
Asymptotic (2.3) acquires a very simple form and T O changes by the rule 

Q/9% (2.4) 

( i  Q =,~dt'f(t') is total laser radiation energy absorbed in the liquid). 

Whence it follows that the normal approach to the problem of occurrence of instability 
of thermocapillary waves does not operate here. Calculation of the power of thermocapillary 
force in this case by Eq. (1.2) is still possible in an approximation of "frozen" tempera- 
ture To. For this it is necessary that the time for existence of a change in To is much 
greater than the inverse vibration frequency. Here the power of thermocapillary force <Vxf>, 
averaged with respect to vibration period 2~/m, appears to be a function of "slow" time. As 
a consequence of this there is a function of time and vibration decrement ~, and with it 
also combined frequency corresponding to a dispersion equation since Imm(k) = T(t)/2. Thus, 
finding the threshold for occurrence of instability of thermocapillary forces according to 
a traditional scheme causes certain difficulties. In view of this we discontinue the search 
for an accurate value of vibration decrement T(t) as a function of time, and by considering 
the problem exclusively close to the instability threshold 7 = 0 we limit ourselves to find- 
ing the minimum value of laser radiation starting from which occurrence of instability is 

possible. 

As can be seen from Eq. (1.2), in order to find the power of thermocapillary force it 
is necessary to determine the value of temperature T 1 oscillation amplitude, linear with re- 
spect to ~ at point z = 0. By linearizing the thermal conductivity Eq. (2.1) it is possible 
to find the corresponding value for TI. Here boundary condition (2.2) after linearizing be- 
comes nonuniform: (3Tz/SZ)z=0 = -~(x, t)(82T0/3Z2)z=0. 

By introducing subsidiary function 8(x, z, t) = Tz(x, z, t) + r t) (ST0/Sz) the 
problem may be reduced to. solving an inhomogeneous equation for 8 with a similar boundary 
condition of the previous form: (38/3Z)z= 0 = 0. Here the equation for subsidiary function 
8 will be as for a normal thermal conductivity equation with a source: 

a-v = + + - (2.5) 

In solving Eq. (2.5) we shall proceed from the fact that activation of the surface ~(x, 
t) has the form of the same plane monochromatic wave r exp(ikx - i~t). Therefore, the de- 
pendence of temperature oscillation amplitude 8z(x, z, t) on longitudinal coordinate x is 
determined by the same exponential multiple exp (ikx) as that for r t), and 828/3x 2 = 
-k28, 82~/8x 2 = -k2~. However, the dependence of 8(t) on time is more complicated than for 
~(x, t), and it cannot be reduced to a similar time multiple exp (-imt). In addition, in 
solving Eq. (2.5) as previously we shall @ssume for simplicity that liquid movement is po- 
tential and therefore velocity v z equals ~ exp (-kz). Equation (2.5) together with its bound- 
ary condition is resolved accurately and its solution may be written in quadratures. Since 
we are interested in the value of temperature T z only at zero, then here we provide an ex- 
pression for 81(z = 0, t) = Tz(z = 0, t) written with z = 0: 
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oo 

T t (x, z = O, t) = 2~k 2 dr% (x, t') ~o ~r o ] / ' - ~ n ~ t - - t ' )  e x p [ - - X k ~ ( t - - t ' ) ]  dz' t - - - - + - - e x p ( - - k z ' ) x k  ~ X k~ exp 4X(~.~- ~ . ( 2 , 6 )  
0 0 

The gradient of "zero" temperature in the inner integral of (2.6) may be found by means 
of accurate solution of (2.3) for temperature To. By substituting this value of 8T0/Sz' in 
Eq. (2.6) we also obtain an accurate expression for linear temperature T I. However, this 
expression for TI is very complicated and cumbersome, and it is expressed in the general 
case in terms of a fourfold integral. In order to facilitate analyzing the behavior of Tl(x, 
z = 0, t) with time we use the following approximation. First, in finding the derivative 
8T0/Sz we use for T0(z , t) not accurate Eq. (2.3), but its asymptotic (2.4). In addition, 
in calculating the inner integral in Eq. (2.6) the linear exponent exp (-kz') in braces is 
substituted by the quadratic component (-k2z'2). All of this makes it possible to carry out 
integration in elementary functions by retaining sufficient accuracy for the calculations 
and the qualitative nature of the behavior of temperature T I with time. 

In carrying out integration in (2.6) taking account of the comments made we find that 

- ~p--~ %--], ( 2 . 7 )  

where dimensionless quantity �9 is a function of two dimensionless parameters et and xk2/~. 
In calculating the power of thermocapillary force the value of ~ itself is not necessary, 
but only its imaginary part 

1 

0 

1 

~3/2 (t -- .~)1/2 cos (cot~) e_Xhh~ 
e-7.h2t~ - -  4o)t. d~ t + 4 z k ~  (t -- ~) 

0 

( 2 . 8 )  

Now we consider the behavior of ImY as a function of ~t. Here we note that parameter 
xk2/w reaches its greatest value with limiting values of ~hnax and kma x which are found from 
the condition that Imw = Rem. Taking account of the dispersion relationship for gravita- 
tional-capillary waves it follows that the greatest value of (xk2/~)max is =X/2V, which for 
example for water is =0.08 in the temperature range up to 100~ Therefore, in the region 
for a change in variable mt from zero to a value of the order of one the combination xk2t~ 
and 4xk2t$(l - ~) also appeared to be of small value and it is possible to ignore them in Eq. 
(2.8). In this case expression (2.8) is considerably simplified and it may be rewritten in 
the form 

1 

t _---~(7 - -  8~) sin ((ot~). 
0 

( 2 . 9 )  

By directing argument ~t to zero we find that ImY(0) = mt~/8. With an increase in ~t 
the linear growth of (2.9) slows down and somewhere in the region of mt = ~/2 the imaginary 
part of �9 reaches a maximum. Then there is a drop in ImY to zero after which the value in 
question becomes negative. With a further increase in the argument there oscillation of 
Im~ about zero and the vibration amplitude itself first falls as (~t) -s/2, and then in an 
exponential way. Below we shall be interested in the greatest positive value of ImP. Sim- 
ple estimates of expression (2.9) show that (ImY)max does not exceed =0.5. In addition, it 
is noted that if for the zero temperature the accurate expression (2.3) is used and not its 
asymptotic (2.4), then the imaginary part of ~ appears to be a function of yet another addi- 
tional variable t/t i. However, it is possible to show that with t S tl, Im~ in modulus is 
much less than the maximum value found above. Therefore, the maximum ImP, equal approxi- 
mately to =0.5, appears to be correct for the whole region of the change in time t. Physi- 
cally this analysis corresponds to the fact that the oscillation amplitude for temperature 
TI at first increases from zero, then it reaches its maximum value, and then it falls again. 

Now we substitute expression (2.7) for linear temperature in Eq. (1.2) and we find the 
average power of thermocapillary force. As might be expected, <Vxf> appears to be a function 
of time. Without going into a detailed study of the behavior of the whole picture of the 
phenomenon in time we make a rough estimate of stability in relation to occurrence of surface 
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waves. For this we equate the maximum value <Vxf>ma x to losses in viscosity and we find the 
minimum threshold for self-activation of capillary waves 

8~02u 
Qmin = k2l d~/dT[(Im ~)max" ( 2 . 1 0 )  

From the relationship obtained it follows that with Q < Qmin liquid heating by laser radi- 
ation occurs stably and activation of surface waves is only possible with Q > Qmin or sig- 
nificantly greater. If the estimate (Im~)ma x = 0.5 found is used and we draw attention to 
dispersion relationship m2 = ak 3, then relationship (2.10) may be rewritten in the form 

Vr~ ~I -I Qmin '~' 167~P2'vcp ~ - ~  (2.11) 

In contrast to [5] relationships (2.10) and (2.11) superimpose limits not on the inten- 
sity of laser radiation l(t), but on the total energy of absorbed radiation. Since the power 
of thermocapillary force is determined exclusively by the temperature reached at the liquid 
surface, then in the stationary case, which was only considered in [5], temperatures T o and 
TI, and with also power <Vxf>, appeared to be functions of constant radiation intensity. 
In the nonstationary case this is not so and temperature, and with it the power of the force 
<Vxf> sought , are not determined by the intensity, but the whole radiation energy absorbed 

t 

to instant of time t: Qt= I d t ' I ( t ' )  �9 
0 

As an example of using Eqs. (2.10) and (2.11) we provide a numerical value of threshold 
Qmin with heating of water by a CO2-1aser radiation with a wavelength of 10.6 Dm. Data for 
water are taken for a temperature in the region =50~ Cp = 4.2 J/g, a = 70 mJ/m 2, v = 0.01 

cm2/sec, Ida/dTl = 0.17 mJ(m2"deg), ~ = 870 cm -~ In this case the minimum threshold for 
occurrence of instability will be proportional to the square root of the disturbance length 

and equal Qmin = 90/~ J/cm2" 

3. When temperature To of the liquid surface reaches the boiling temperature, then 
apart from the mechanism of surface wave activation considered yet another mechanism of sur- 
face instability arises. The new mechanism is connected with nonuniform temperature dis- 
tribution, but not along the liquid surface as previously, but with depth. Instability of 
this type has been studied in detail in [7]. With evaporation of substance boundary condi- 
tion (2.2) changes radically and in ignoring thermal flow in the direction of the gas 
K'(VT')z= ~ it is written in the form 

• T)z=~(~,o ~-- iL. ( 3 . 1 )  

Here  L i s  h e a t  o f  e v a p o r a t i o n ;  j i s  f l ow o f  e v a p o r a t i n g  mass .  From e q u a l i t y  ( 3 . 1 )  i t  f o l -  
lows t h a t  w i t h  e v a p o r a t i o n  o f  a s u b s t a n c e  t h e  maximum t e m p e r a t u r e  s h i f t s  f rom t h e  s u r f a c e  o f  
t h e  l i q u i d  i n t o  t h e  d e p t h  and b o u n d a r y  c o n d i t i o n  ( 3 . 1 )  i s  now w r i t t e n  f o r  t h e  moving s u r f a c e  
z = z 0 ( t )  even  in  t h e  a b s e n c e  o f  s u r f a c e  waves .  Here t h e  r a t e  o f  change  in  t h e  p o s i t i o n  o f  
t h e  b o u n d a r y  as  a r e s u l t  o f  e v a p o r a t i o n  i s  c o n n e c t e d  w i t h  mass f low as j = Pz0. As f a r  as  
t h e  v a l u e  o f  t h e  mass f low j i t s e l f  i s  c o n c e r n e d ,  t h e n  i t  may be found  in  t h e  s i m p l e s t  c a s e  
f rom t h e  H e r t z - K n u d s e n  e q u a t i o n  

p~(Vo)-p' 
] = V ~  ~' (3 .2 )  

where 8 is condensation coefficient; Ps(T0) is saturated vapor pressure at temperature To 
at the liquid surface; R is gas constant. 

Nonuniform temperature distribution through the depth of a liquid leads to the situ- 
ation that with random deflection of the phase interface there is a reduction in boundary 
layer thickness, i.e., the length over which a marked change in temperatur e occurs. Then 
according to equality (3.1) there is an increase in mass flow as a result of additional 
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evaporation of the substance and as a consequence of this deflection of the surface increases 
even more. Solution of thermal conductivity Eq. (2.1), taking account of new boundary condi- 
tion (3.1), makes it possible in principle to find the increment for increasing surface dis- 
turbances as a function of disturbance length. The dependence ~(k) in a stationary evapora- 
tion regime (I = const) was found in [7]. However, some simple estimates of ~ may be made 
in this case without recourse to complex calculations and serious limitations. 

As follows from Eq. (3.2), the velocity of the boundary z0(t) is a function of tempera- 
ture T O of the liquid surface, i.e., z 0 = r It follows from solving the set of Eqs. 
(2.1), (3.1), and (3.2) that temperature T O itself should be a function of z0(t). There- 
fore, for a surface disturbance ~ of infinite length, i.e., random deflection 5z0(t), the 
corresponding equation is found simply as a result of expanding function r ) into a 
series with respect to 6z0: 

d6 o d| tOro  ( 3 . 3 )  

(r = j/p = ~[Ps(T0) - p']/2~r Considering that derivative aT0/St is small compared 

with z0(ST0/Sz), and also by using boundary condition (3.1) for finding spatial derivative 
(ST0/SZ)z=z0, from Eq. (3.3) we obtain the expression sought for the increment 

7- - -  ~ z ~  ~ l 2p'L / (3.4) P~ (To) X%To 

Here P' is vapor density; in addition, in deriving expression (3.4) use was made of the 
Clausius-Clapeyron equation: dPs/dT -~ o'L/T 0. Up to the temperature for explosive boiling 
T L [8] the multiple curved brackets in the right-hand part of (3.4) with sufficient accuracy 
equals one. In this case expression (3.4) coincides with the maximum increment y(k) obtained 
in [7] assuming a steady-state stationary evaporation regime with I = const. Further expan- 
sion of function ~ into a series with respect to ~z 0 with an accuracy to square terms makes 
it possible to find coefficient ~2 with ~z0~whichappears to be negative. This indicates 
that the instability in question is mild in nature and after all there is establishment of 
a finite amplitude for increasing disturbances with (~Z0)ma x = >/>2. 

As can be seen from expression (3.4), increment 7 increases with an increase in surface 

evaporation rate %, which in turn is affected by the proportional intensity of radiation 
(in a quasistationary evaporation regime there is the equality I = jLef [9]). Increment 

acquires the greatest value when To reaches the explosive boiling temperature with which 

z0 is at a maximum with surface boiling. Thus, for water from Eq. (3.4) it follows that 
~o 

with T L = 574 K (p = 0.I MPa), (iZ0)ma x = 40 m/sec and Ima x -~ 2.5.105 W/cm 2 , themaximum incre- 

ment Ymax -~ 3"i0~ sec-1. With the condition i/y > T this requires absorption of energy I/ 
~ 0.i J/cm 2. With a further increase in intensity and energy of laser radiation liquid 

surface evaporation changes to volumetric and the instability of the phase interface acquires 
an absolute character. 
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ELECTRIC-CURRENT-INDUCED RESTRUCTURING OF THE POROUS SPACE IN 

A MEDIUM 

I. G. Abdul'manov, V. I. Ermakov, N. S. Rostovskii, 
A. D. Rybakov, A. E. Popov, and V. I. Selyakov 

UDC 534.222 

It was shown in [1-3] that the transmission of an electric current through a porous 
saturated medium can be reduced to a change in its permeability and electrical conductivity. 
These changes are due to the restructuring of the porous space in a medium as a result of 
localization of the density of energy release in thin capillaries, limiting the conductivity 
of the medium. The structure of the porous space in rocks can be described within the frame- 
work of the percolation model of an inhomogeneous medium [4], using the capillary probabil- 
ity density function (CPDF) with respect to effective capillary radius. Here we report the 
results of an experimental study of the changes that occur in the structure of the porous 
space and, hence, in the permeability of sandy-argillaceous rocks when an ac electric cur- 
rent is passed through them. 

The principal complication in carrying out such an experiment is that methods that would 
not affect the structure of the porous space of the medium must be developed for determining 
the CPDF. Accordingly, we used the electroporosimetric method developed especially for 
these purposes [5]; the essence of this method is as follows. The sample of rock under 
study is placed in a vertical tube (Fig. i), whose end is immersed in a vessel of liquid; 
the steady-state distribution of saturation established in the medium by the capillary 
forces decreases as the height h of the liquid increases. As a result the electrical resis- 
tivity Pe(h) of the rock decreases as h rises. If we measure Pe(h) by the method of [5] at 
low voltages that do not result in a change in the CPDF, therefore, we can determine the 
CPDF before and after the passage of an electric current through the porous saturated medium. 

As the electrically conducting liquid we used a CaCI 2 solution, which does not enter 
into an intensive ion-salt exchange with the rocks studied. The concentration of the solu- 
tion was 0.i N in all the experiments. Each tube of diameter 3 cm and length 1 m was filled with 
portions of dry rock, gradually permeated with solution entering through the end of the tube from 
the communicating vessel so that its level varied simultaneously with the level of the rock. We 
applied voltage to the outside electrodes to measure Pe(h) and then measured AF(h), the dif- 
ference between the bottom electrode and electrodes placed equidistantly along the height of 
the tube. Knowing A~(h), the current flowing in the tube, the cross-sectional area of the 
tube, and the distance between neighboring electrodes, we can find Pe(h), the resistivity of 
the segment of the rock at a height h. 

The experiment on electric treatment of sandy-argillaceous rock consisted of two stages. 
In the first stage the solution was filtered in the tube for 5-15 days (depending on the 
rock) until steady-state filtration was established. On the basis of the results of measure- 
ments of the liquid flow rate at a constant pressure gradient in the tube we measured K, the 
permeability of the medium as well as Pe0(h), the resistivity of segments of the rock when 
the sample is completely saturated with the liquid. In the second stage, the flow of liquid 
through the tube was stopped until a steady-state saturation distribution was established, 
Pe(h), was measured, and the CPDF was determined. Liquid was then again passed through the 
tube and the stability of K was checked. 
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